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FOREWORD 

This  r e p o r t  con ta ins  the  t es t  r e s u l t s  ob ta ined  on a m u l t i c o m p o n e n t  
f o r c e  s y s t e m  d e v e l o p e d  to d e t e r m i n e  t h r u s t  v e c t o r  e x c u r s i o n s  of the 
Apol lo  S e r v i c e  Module (S/M) eng ine  (AJ10-137)  u n d e r  S y s t e m  921E. The  
Apol lo  S /M eng ine  p r o g r a m  is s p o n s o r e d  by the  Nat iona l  A e r o n a u t i c s  and 
Space A d m i n i s t r a t i o n ,  Manned  Spacec ra f t  C e n t e r  (NASA-MSC). T e c h n i c a l  
l i a i s o n  was p r o v i d e d  by the A e r o j e t - G e n e r a l  C o r p o r a t i o n  (AGC), sub-  
c o n t r a c t o r  of the  Apol lo  S /M engine ,  and Nor th  A m e r i c a n  Avia t ion ,  Space 
and I n f o r m a t i o n  S y s t e m s  Div i s ion  (NAA-S&ID), p r i m e  c o n t r a c t o r  for  the S/M. 

The m u l t i c o m p o n e n t  f o r c e  s y s t e m  was d e v e l o p e d  by ARO, Inc. (a 
s u b s i d i a r y  of S v e r d r u p  and P a r c e l ,  Inc. ), A r n o l d  E n g i n e e r i n g  Deve lop-  
m e n t  C e n t e r  (AEDC), A i r  F o r c e  S y s t e m s  C o m m a n d  (AFSC), u n d e r  Con-  
t r a c t  AF  40(600)-1200.  The r e s u l t s  r e p o r t e d  h e r e i n  w e r e  ob ta ined  in 
the P r o p u l s i o n  Eng ine  T e s t  Cel l  (5-3) du r ing  the  p e r i o d  b e t w e e n  S e p t e m -  
b e r  1, 1964, and Ju ly  11, 1965, u n d e r  ARO P r o j e c t  No. RM1356, and the 
m a n u s c r i p t  was s u b m i t t e d  fo r  pub l i ca t ion  on N o v e m b e r  4, 1965. 

The a u t h o r s  a re  g ra t e fu l  to D. Gray,  J r . ,  and C. K. A c k e r  (Sc ien t i f ic  
C o m p u t i n g  S e r v i c e )  for  wr i t i ng  the  c o m p u t e r  p r o g r a m  for  data  r e d u c t i o n  
and to D. K. G r a h a m ,  J. C. B lev ins ,  W. E. Spenglar ,  and F l o r a  T. Yando 
( P r o p u l s i o n  Wind Tunnel  Fac i l i t y )  fo r  the  u se  of t h e i r  p r e v i o u s  work  on s ix -  
c o m p o n e n t  wind tunnel  f o r c e  s t r a i n - g a g e  b a l a n c e s .  

This technical report has been reviewed and is approved. 

Ralph W. E v e r e t t  J e a n  A. J a c k  
Major ,  USAF Colonel ,  USAF 
AF  R e p r e s e n t a t i v e ,  RTF D C S / T e s t  
D C S / T e s t  

i i  
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ABSTRACT 

A multicomponent force system was developed to determine the 
line of action of the forces generated by the Apollo Service Module 

engine. This force system was a force balance based on the principles 
of linear and repeatable installation tare effects. The basic concepts 

of the force balance and the statistical accuracies which were achieved 
are presented along with a detailed discussion of the calibration pro- 

cedure and data reduction methods. Thrust vector excursion for two 
ablative combustion chambers during nongimbaling engine operation 

and limited thrust vector data during gimbaling operation are also pre- 

sented. The precision of the thrust vector data was determined to be 

0.033 degfor angular measurement and 0.026 in. for position determi- 

nation. 
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SECTION I 
INTRODUCTION 

With the  adven t  of a b l a t i v e l y  coo l ed  l i q u i d - p r o p e l l a n t  c o m b u s t i o n  
c h a m b e r s ,  the n e e d  fo r  d e t e r m i n i n g  the t h e r m a l  and ab la t ion  e f f ec t s  
on the  t h r u s t  v e c t o r  pos i t i on  b e c a m e  a p r o m i n e n t  c o n c e r n  of eng ine  
m a n u f a c t u r e r s .  T h e s e  e f f ec t s  wi l l  not n e c e s s a r i l y  fo l low a s i m i l a r  
p a t t e r n  for  any  two c o m b u s t i o n  c h a m b e r s .  T h e r e f o r e ,  to f o r m  a b a s i s  
fo r  p r e d i c t i n g  the t h r u s t  v e c t o r  e x c u r s i o n  due to the t h e r m a l  and ab la -  
t ion  e f f ec t s ,  e x p e r i m e n t a l  da ta  on s e v e r a l  c h a m b e r s  a r e  n e c e s s a r y .  
To p r o v i d e  t h r u s t  v e c t o r  pos i t i on  with  r e s p e c t  to b u r n  t i m e  r e q u i r e s  the 
u se  of a m u l t i c o m p o n e n t  f o r c e  m e a s u r i n g  s y s t e m .  C a r e f u l  c o n s i d e r a t i o n  
of the  fo, 'c  ,~ s y s t e m  a l i g n m e n t  and of the eng ine  a l i g n m e n t  w i th in  the f o r c e  
s y s t e m  m u s t  be o b s e r v e d  to def ine  the exac~ l o c a t i o n  of the g e n e r a t e d  
t h r u s t .  

A s i x - c o m p o n e n t  f o r c e  s y s t e m  was  d e s i g n e d  fo r  u se  in d e t e r m i n i n g  
the ab l a t i ve  and t h e r m a l  e f f ec t s  on the  l ine  of ac t ion  of t h r u s t  fo r  the 
A e r o j e t - G e n e r a l  C o r p o r a t i o n  (AGC) A J10-137  Apol lo  S e r v i c e  Module  
(S/M) eng ine  d u r i n g  t e s t s  c o n d u c t e d  at s i m u l a t e d  a l t i t ude  c o n d i t i o n s  in 
the P r o p u l s i o n  Eng ine  T e s t  Ce l l  ( J -3) .  Th i s  f o r c e  b a l a n c e  s y s t e m  was  
d e s i g n e d  f o r  l i n e a r  and r e p e a t a b l e  i n s t a l l a t i o n  t a r e  e f f ec t s  so tha t  l i n e a r  
c o r r e c t i o n s  cou ld  be m a d e  to the  m e a s u r e d  c o m p o n e n t  f o r c e s  to ob ta in  
the  a c t u a l  app l i ed  f o r c e s .  

Th i s  r e p o r t  p r e s e n t s  a d e s c r i p t i o n  of the  J - 3  f o r c e  b a l a n c e ,  the  
m e t h o d  of c a l i b r a t i o n  of the  b a l a n c e ,  c a l i b r a t i o n  e v a l u a t i o n  t e c h n i q u e s ,  
an e r r o r  a n a l y s i s  fo r  the  f o r c e  b a l a n c e ,  and the t h r u s t  v e c t o r  da ta  ob- 
t a i n e d  d u r i n g  t e s t i n g  of the A J10 -137  eng ine .  

SECTION II 
APPARATUS 

2.1 INSTALLATION 

A m u l t i c o m p o n e n t  f o r c e  s y s t e m  was  e m p l o y e d  to m e a s u r e  the f o r c e s  
g e n e r a t e d  by the A J10 -137  eng ine .  The fo l lowing  s i x - c o m p o n e n t s  of 
f o r c e  w e r e  m e a s u r e d :  (1) ax ia l  f o r c e ,  (2) f o r w a r d  p i tch ,  (3) aft p i tch ,  
(4) ro l l .  (5) f o r w a r d  yaw, and (6) aft yaw.  T h e s e  c o m p o n e n t s  a r e  shown 
s c h e m a t i c a l l y  in F ig .  l a .  
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The multicomponent force system is installed vertically in the 
Propulsion Engine Test Cell (J-3) 1 as shown in Fig. lb. The force 
system is composed of an outer cage and an inner cage. The inner 
cage receives forces applied by the engine through two engine mounting 
pads (Fig. Ic) and a yaw actuator attachment point. All forces are 
transmitted by the inner cage through data load trains containing force 
measuring load cells which are isolated by universal flexures from the 
cell ground system. The outer cage is the ground for side force meas- 
urements and is rigidly connected to the test cell ground (Fig. Ib). The 
inner and outer thrust cages are constructed for maximum rigidity under 
expected side forces. 

For each force measuring load cell, there is a corresponding cali- 
brate load cell (Fig. 2). The calibrate loads for pitch, yaw, and roll 
are applied with pneumatic loaders that apply both tension and compres- 
sion loads to the data load cell. Gaseous nitrogen is used to apply 
pressure to the loader. Each pneumatic loader has a spring which re- 
turns the piston to null under a no-pressure condition. Axial calibrate 
loads are applied wlth a hydraulic loader. The calibrate load trains are 
disconnected from the system during engine firings. Figure 3 presents 
some photographs of the load train installation. 

2.2 INSTRUMENTATION 

All force measuring load cells are dual-output strain-gage-type 
cells. The axial load cell has a capacity of 50,000 Ibf. The side force 
cells, both pitch and yaw, and the roll load cell are 500 Ibf for both the 
data and calibrate systems. 

The outputs of the force data and calibrate load cells were recorded 
by three systems during calibrations. The forces were recorded on a 
light-beam oscillograph for immediate control room observation, on a 
magnetic tape analog-.to-digital system for on-line engineering data in 
the control room, and on an analog-to-frequency high resolution mag- 
netic tape system for high-speed computer reduction. The calibration 
data from the analog-to-frequency magnetic tape system were used in 
determining the balance constants. During engine firings, the analog- 
to-frequency recording system was used to record data for thrust vector 
determination. 

1Test Facilities Handbook (5th Edition). "Rocket Test Facility, 
Vol.'2." Arnold Engineering Development Center, July 1963. 
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SECTION III 
PROCEDURE 

3.1 PRE-TEST ALIGNMENT 

One of the principal concerns in determining engine thrust vector 
is a precise definition of system alignment. The initial phase, the 
alignment of the axial force calibration system centerline with the 
centerline of the axial force data system, was accomplished by refer- 
ence measurements in three planes from known points to the centerline 
of each system. The next phase, alignment of the outer cage, was 
accomplished by installing an optical alignment rig inside the outer cage 
and aligning the centerline of the outer cage with the centerline of the 
axial force data measuring system. With the alignment rig installed, 
the parallelism and perpendicularity of the load cell ground mounting 
surfaces were determined. The inner thrust cage was removed from 
the test cell and mounted on an optical alignment bench where the 
parallelism and perpendicularity of the load cell mounting surfaces, the 
engine mounting pads. and the axial data load train mounting surfaces 
were obtained and the centerline of the inner cage was determined. The 
inner cage was then installed and aligned with respect to the centerline 
of the axial force data load train. The engine was aligned with respect 
to the gimbal ring mounting pads by using an optical alignment rig sup- 
plied by Aerojet-General Corporation (AGC). The engine was aligned in 
the inner thrust cage using a dowel-pin installation on one of the engine 
mounting pads. After the engine was installed, a final alignment check 
was made with clinometer measurements on a machined surface on the 
top of the inner cage. The machined surface was installed parallel to the 
plane of the engine mounting pads. 

Using the above procedure, the centerline of the inner cage was 
aligned to the centerline of the force system within 0.070 in. and was 
parallel within 0. 047 deg. This would produce a circle in the plane of 
the throat with a radius of 0.070 in. within which the center of the co- 
ordinate system lies for each engine installation. The angle of 0.047 deg 
is the maximum possible bias error for any engine installation. 

3.2 CALIBRATION 

An in-place calibration is made on the thrust system prior to each 
engine test series to determine the constants for corrected side force 
calculations. These calibrations are performed with propellant lines 
pressurized and the engine in firing configuration. An in-place calibra- 
tion consists of applying known loadings to each of the calibrate load 
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trains in turn and recording the force output at each loading in all of 

the six data load cells. It is required, for first-order solutions, that 
all loads be applied so that only one calibrate force is varied at a time. 

When a calibrate load is applied, the output of the corresponding data 
load cell is the principal load, and the outputs of the other data load 
cells are interactions. The calibrate load is applied in an analog 

fashion (that is, the loading is varied continuously with time) from zero 

to full load and back tozero. The time taken to apply the calibrate load 
is approximately two minutes, which allows the response of the system 
to follow the loading. In determining balance constants, the calibration 

is reduced at discrete intervals to produce a digital record of reaction 

versus applied load. Two calibrations are conducted prior to each 

series to determine the repeatability of the system. 

Calibrate loads are applied in both the positive (compression) and 
negative (tension) directions to allow for the possibility of a slope change 
on a load cell when going from a negative to a positive applied load. 
Provisions are made in the data reduction program for the selection of 
the balance constant based on the sign of the measured load. 

3.2.1 Comparison of Calibration 

Two complete calibrations are conducted on the six-component 
thrust stand prior to any engine test series. By comparing these 
calibration results, a check on the repeatability of the system is ob- 
tained. The comparison points are (1) the principal calibration constants, 
that is, the constants obtained for a data load cell when force is applied 
to the corresponding calibrate load cell, and (2) the calibration constants 
obtained from an axial calibrate load application. 

Table I presents the principal calibration constants for three groups 
of two calibrations. The percentage change in each calibration constant 
is presented in Table If. The changes generally experienced were on the 

order of from 0.25 to 0.5 percent. (When changes as large as 2 percent 
were encountered, the problem area was corrected. ) The principal 

slopes for a typical calibration are presented in Fig. 4. 

The calibration constants for the multicomponent force system are 

determined from calibrations conducted under ambient pressure con- 

ditions. Since data are obtained at simulated altitude conditions, it is 

necessary to determine the effect of low pressure on the force system. 

An axial calibrate loading is performed after a cell pressure of 0.5 psia 
is obtained. A comparison of the calibration constants obtained during 
sea-level axial calibrations and the calibration constants obtained at 

altitude pressures can be made, and Table Ill presents the results of 

such a comparison. 

4 
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3.3 DATA ACCURACY 

The accuracy with which the multicomponent force system is 
capable of determining forces is defined by a combination of several 

possible errors. The first of these errors, arising from the fact that 

no physical system is perfectly linear and repeatable, is incurred be- 

cause the data are linearized by the method of least squares to compute 
the balance constants. Figure 5 presents a typical deviation from a 
linearized relationship. Another source of error is the basic accuracy 

limits of the data acquisition equipment. The combined effect of lineari- 

zation and data acquisition errors can be determined by using the balance 

constants obtained from a calibration to reduce the calibration as data. 

The difference between the input and the calculated value is the combina- 
tion of linearity and data acquisition errors. Table IV presents the one 

standard deviation of the errors calculated in this manner. This error 
is +0.6 percent of the full range of the load cell for the average standard 

deviation of all calibrations presented. 

Another discrepancy introduced into the system is the capability, of 
the calibrate load cell in determining the true force applied. This error 

was defined by laboratory calibrations of the load cells against a secon- 
dary standard and determined to be +0. 16 percent of full scale. 

The error in repeatability of the system from calibration to calibra- 

tion was found to be 0.5 percent, one standard deviation, while the error 

in repeatability of the system between sea-level calibration and altitude 
calibration was on the order of I. 54 percent of full scale for one standard 

deviation. 

T h e  c o m b i n a t i o n  of  a l l  t h e s e  e r r o r s  is  g i v e n  a s  the  a c c u r a c y  of  an 
i n d i v i d u a l  c o m p o n e n t  of  t h e  f o r c e  s y s t e m .  The  c o m b i n e d  e r r o r  i s  
d e t e r m i n e d  b y  the  s q u a r e  r o o t  of  t he  s u m  of t h e  s q u a r e s  of a l l  e r r o r s  
i n v o l v e d .  T h e  c o m b i n e d  e r r o r  of  the  f o r c e  m e a s u r e d  by  e a c h  l o a d  c e l l  i s  
+ 1 . 7 3  p e r c e n t ,  one  s t a n d a r d  d e v i a t i o n .  

The square root of the sum of the squares of the error for both load 

cells in a plane will give the total error of force measurements in a 
given plane. For the yaw and pitch planes the total error is +2.5 percent 

of the full range of the load cell. An error of 2.5 percent will give a 

precision of 0.033 deg for the thrust vector angle and 0.0263 in. in the 

location of the point of intersection of the thrust vector with the engine 

gimbal plane. 
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SECTION IV 
CALIBRATION EVALUATION 

T h e  t h r u s t  v e c t o r  f o r  an  o p e r a t i n g  e n g i n e  c a n  be  d e t e r m i n e d  f r o m  
t h e  g e o m e t r y  of  t h e  s y s t e m  a n d  t h e  m e a s u r e d  f o r c e s  a f t e r  c o r r e c t i o n  
f o r  i n t e r a c t i o n  e f f e c t s .  T h e  e q u a t i o n s  u s e d  f o r  t r a n s f e r r i n g  t h e  c o r -  
r e c t e d  f o r c e s  to  t h e  e n g i n e  g i m b a l  p l a n e  a n d  c o n v e r t i n g  t h e m  to  a r e -  
s u l t a n t  t h r u s t  v e c t o r  w e r e  d e v e l o p e d  f r o m  t h e  c o n s i d e r a t i o n s  of  s t a t i c  
e q u i l i b r i u m .  T h e y  a r e  p r e s e n t e d  in  F i g .  6. 

T h e  s i x - c o m p o n e n t  s y s t e m  is  d e s i g n e d  on t he  c o n c e p t  t h a t  f o r  a n y  
l o a d  a p p l i c a t i o n  (L) ,  t h e  f o r c e  o u t p u t  f r o m  a n y  d a t a  l o a d  c e l l  (R) c a n  be  
o b t a i n e d  f r o m  t h e  f o l l o w i n g  e q u a t i o n :  

a = C L (1 )  

w h e r e  C is  a c o n s t a n t .  T h e  f o r c e  in  e a c h  of t h e  s i x  l o a d  c e l l s  c a n  be  
r e p r e s e n t e d  in t e r m s  of  t h e  a p p l i e d  l o a d  by  v a r y i n g  t h e  c o n s t a n t .  
E q u a t i o n  (1) t h e n  e x p a n d s  to  t h e  f o r m  

Ri = C i L  (2) 

w h e r e  i v a r i e s  f r o m  1 to  6 a n d  r e p r e s e n t s  t h e  d a t a  l o a d  c e l l  b e i n g  o b -  
s e r v e d  ( T a b l e  V).  S i n c e  t h e r e  a r e  s i x  c a l i b r a t e  l o a d  a p p l i c a t o r s ,  Eq .  (2) 
c a n  be  e x p a n d e d  to  r e p r e s e n t  t h e  f o r c e  m e a s u r e d  in  any  l o a d  c e l l  u n d e r  
a ny  a p p l i e d  l o a d .  

R, = C i , j L j  (3 )  

where j represents the position of load application and varies from 1 to 6 
(Table V). 

The quantity Ci, j is, then, a six-by-six matrix, whereas R i and Lj 
are column matrices. The calibration constant matrix (Ci, j) is deter- 
mined for both positive and negative applied forces, giving a total of 
72 constants, 36 positive and 36 negative. 

4.1 LOCATION OF BALANCE ELECTRICAL CENTER 

In order to distinguish the actual side forces from interactions, the 
calibrations described in Section 3.2 were conducted and the calibration 
constants obtained. The use of the calibration constants in this manner 
requires linear and repeatable interactions. The method of least squares 
was used to determine the best linear slope of the data calibration inter- 
action data. The slopes were used in determining the calibration con- 
stants (Ci, j). The method of calculating the calibration constants is pre- 
"sented in Section 4. I. I. 

6 
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When two load cells are in a common plane, their location with 

respect to the location of the calibrate load cells can be determined 

through the use of the electrical center concept. The electrical center 

of a load cell is the point at which an applied load would be sensed 

completely by that load cell. Using the interaction slopes (S = dR/d-L) 

and the distance (X) between the point of application of the calibrate 

loads, an expression for the interaction slope as a function of distance 
(dS/dX) can be written. 

dR I n t e r a c t i o n  S l o p e  (~T) 

o=x ;~ el o 
oMr-4 

.,4 Q) 

~<D O NO 
C U 

Z~ O 

~e 
r-4 

dS 

dX F 

___~ Reference 
Plane 

~ F o r w a r d  
L o a d i n g  
Loca  t i o n  

F o r w a r d  Data 
Load C e l l  

A f t  D a t a  Load  C e l l  

A f t  
L o a d i n g  
Location 

The interaction slope as a function of a distance, using a point slope 
formula, becomes 

Sz, ,  = (d~_+~,) X + Kz,i 
Z . I  

where z and i are defined in Table V, and X is measured from an 

(4) 
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a r b i t r a r y  r e f e r e n c e  p l a n e .  F o r  t h e  s u b j e c t  s y s t e m  t h e  r e f e r e n c e  p l a n e ,  
c h o s e n  so  t h a t  no  n e g a t i v e  d i s t a n c e  w o u l d  be  e n c o u n t e r e d ,  w a s  l o c a t e d  
10 in.  f o r w a r d  of  t h e  u p p e r  c a l i b r a t e  l o a d  a p p l i c a t o r .  T h e  e l e c t r i c a l  
c e n t e r  i s  t h e  p o i n t  of  z e r o  i n t e r a c t i o n  s l o p e  f o r  t h e  o t h e r  d a t a  l o a d  c e l l  
in  t h a t  p l a n e .  T h e  e l e c t r i c a l  c e n t e r  i s  a l s o  t h e  m a t h e m a t i c a l  l o c a t i o n  
of  t h e  f o r c e  m e a s u r i n g  g a g e .  

O n c e  t h e  e l e c t r i c a l  c e n t e r  i s  d e t e r m i n e d  f o r  e a c h  l o a d  c e l l  in  a 
p l a n e ,  two  u s e f u l  f a c t s  c a n  be  d e t e r m i n e d :  (1) t h e  d i s t a n c e  b e t w e e n  t h e  
e l e c t r i c a l  c e n t e r  of  t h e  l o a d  c e l l s  (AX), a n d  (2) t h e  d i s t a n c e  f r o m  t h e  
r e f e r e n c e  p l a n e  to  a p o i n t  h a l f w a y  b e t w e e n  t h e  two  e l e c t r i c a l  c e n t e r s  
(X). T h e  e l e c t r i c a l  c e n t e r  i s  d e t e r m i n e d  f o r  b o t h  p o s i t i v e  a n d  n e g a t i v e  
l o a d  a p p l i c a t i o n s  in b o t h  t h e  p i t c h  a n d  y a w  p l a n e s .  

4.1.1 Calculation of Calibration Constants 

4.1.1.1 Pitch and Yaw Gages 

T h e  f o r c e  in  a n y  l o a d  c e l l  c a n  be  c a l c u l a t e d  f o r  a n y  l o a d  a p p l i c a -  
t i o n  if t h e  i n t e r a c t i o n  s l o p e ,  t h e  l o c a t i o n  of  t h e  f o r c e  v e c t o r ,  a n d  t h e  
a p p l i e d  f o r c e  a r e  k n o w n .  An e q u a t i o n  of  t h e  f o l l o w i n g  f o r m  is  r e q u i r e d :  

Ri = S z , i L j  (5) 

F r o m  the e l e c t r i c a l  c e n t e r  i n v e s t i g a t i o n ,  the s lope  (S) was  d e t e r m i n e d  
a s  a f u n c t i o n  of  l o a d  p o s i t i o n ,  Eq .  (4), 

(d-iv-vl X + Kz,i S z , i =  \ u A /  

w h e r e  X is  t h e  l o c a t i o n  of  t h e  f o r c e .  S u b s t i t u t i o n  of  Eq .  
t h e n  y i e l d s  

( 4 ) i n t o  Eq .  (5) 

(6) 

The equations of the calibration constants for the pitch load cells 
are developed for the purpose of demonstration. The location of the 
pitch force vector with respect to the reference plane can be deter- 
mined from the moment equations: 

M = L t X  (7) 

L t m a y  b e  r e p r e s e n t e d  a s  t h e  s u m  of  L P 1  a n d  L P 2 .  

Lt = Lp, + Lp 2 (8) 
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The  d i s t a n c e  between the  f o r c e  m e a s u r i n g  c e l l s  L P 1  and L p 2  is  

d e f i n e d  as  AXp.  The  m o m e n t  g e n e r a t e d  abou t  the  r e f e r e n c e  po in t  can 
then  be ~ , r i t t en  as  

M = l_,p, (X,ef.) + l_,p~ (Xref. t- A X p )  

H a v i n g  e s t a b l i s h e d  tha t  

(9) 

aXp (10) Xref. = Xp 2 

s u b s t i t u t i o n  y i e l d s  

Combining 

M = (Xp ax,  s xq  (11) 
- 2 / + Lp2 (Xp  a_ 2 / 

M = (Lp~ - L p a )  Xp - I , I . p ~  - Lp2) _\kpo (12) 

The  l o c a t i o n  of the  f o r c e  v e c t o r  is d e f i n e d  f r o m  the  m o m e n t  e q u a -  
t i o n  as f o l l o w s :  

X = ~_AL 
I,t 

Therefore 

I ,P I - - I  P 2 ( '~XI '~ 
XpF I,pt + Lp= k 2 / + Xp (13) 

The expression for the location of the force vector (Eq. (13)) can 

now be substituted for X in F,q. (6). 

Ill = ~-X-X/p,, - 2(I1, +LI, 2) '~- Xp + Kp, ,  Lt (14) 

R e p l a c i n g  L t by L P 1  + L P 2 ,  Eq.  (14) c an  be r e w r i t t e n  as  

~- ~-]-X-X/,,,, (Xp)(Lp,  ~- Lp 2) + Kp,i (Lp, + i_,p 2 ) 

S e p a r a t i n g  L P 1  and L P 2  y i e l d s  

] + L \ as/p,i - - -T-  + \~-x/p,, 

(15) 

Xp+Kp,11 LP 2 

(16) 

9 
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R c a n  a l s o  be  r e p r e s e n t e d  in the  f o r m  

Ri = C, ,ILp, + C(,s Lp~ (17)  

w h e r e  Ci ,  1 r e p r e s e n t s  t he  c a l i b r a t i o n  c o n s t a n t s  f o r  a n y  g a g e  w i t h  a f o r -  
w a r d  p i t c h  c a l i b r a t e  l o a d ,  and  Ci,  5 d e f i n e s  the  c a l i b r a t i o n  c o n s t a n t s  f o r  
a n y  g a g e  w i th  an  aft p i t c h  c a l i b r a t e  l o a d .  

S e t t i n g  Eq .  (16) e q u a l  to Eq.  (17), an  e x p r e s s i o n  f o r  Ci ,  1 and  Ci,  5 
c a n  be  d e t e r m i n e d :  

C'~,~ = 7- - - - 4 -  Xp  + K p , i  
p , i  2 p , t  (18) 

(dS) ~Xp (dS) Xp + Kp,i 
C l , S  = ~ p,, ~+ ~ p, i  

A similar development for the yaw plane yields similar results in Xy: 

C 1 ' 2 '  = -- " - ~  y t ,  2 - ~  y , i  ( 1 9 )  

C l , ,  = ( ~ X ) - - - ~ - - - - +  Xy + K v , t  y,l y,i " 

4.1.1.2 Axial and Roll Calibration Constants 

For calibration loads applied in either the axial or roll direction, 
the calibration constants are determined directly from the observed 
force in each load cell. The calibration constants are simply the 
slopes of the calibration loads versus data load cell outputs. An expres- 
sion for these calibration constants is given below: 

C i, 3 = Sa,  i Axial 

Ci,4 = ,S , , i  Roll 

(20) 

4.2 DETERMINATION OF BALANCE CONSTANTS 

O n c e  the  c a l i b r a t i o n  c o n s t a n t s  Ci,  j a r e  d e t e r m i n e d ,  t h e y  c a n  be  
r e p r e s e n t e d  in m a t r i x  f o r m :  

B 

R, 

R2 

R5 

R 4  

R5 

_% 

B 
C l , t l  CLw 2 

C2,1 C2,2 

I C3,  I C3, 2 
= 

C,,, C,, ,  

Cs ,, Cs ,= 

C,, ,  C~,2 
B 

m 

C1~3 C1~,4 C|~t s Cl:t f i  

C2,3 C2,, C2,s  C2,6 

C3 ,i, ] C3~4 C]sS C3116 
C,,~ C,,, C,,~ C,,~ 
Cs,3 Cs,, C,,~ C5,~ 

C~,~ C,, ,  C,,s C6,~ 

N m 

L, 

L= 

L3 

L, 

L s 

.]-'6 
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The above equation is the matrix representation of Eq. (3), 

R, = C,,j  Lj 

To determine the true applied force (L i) from the load cell meas- 
urements, an equation of the following form is necessary: 

1.,~ = kj,; R, 

where kj, i are the balance constants. Comparing Eqs. 
kj, i is seen to be the inversion of the matrix Ci, j. 

(21) 

(3) a n d  (15), 

Therefore, to obtain the applied load (Lj) from measured forces, 
the calibration constants are simply inverted and multiplied by the 
forces measured. 

LI 

L~ 

]~ 

[4 

L,s 

]-6 

k 1:,1 

k2s ]  

k 3,,1 

k4?t  

k 5 ~ I 

k6~l 

kLy2 kl,l kl~4 kl,s k z y 6  

k2y 2 k2~ 3 k2,, k2 ,s k 2,6 
L3,2 k~,~ k.~,4 k~, 5 k3, ~ 

k4,2 k4,3 k4,4 k4,s k,.,6 
ks,2 ks,~ ks,4 ks,5, ks,6 

k6,~ k6,3 k~,4 k6,s k~, 

RI 

R2, 

R,I 

I:t, I 

tlo I 

(22) 

During an engine firing, forces are measured at each of the six 
data force measuring load cells. The actual forces are determined 
from these measured forces by correcting for the interaction effects. 
This is done by applying the balance constants developed in this section 
to the measured forces. 

SECTION V 
RESULTS AND DISCUSSION 

5.0 THRUST VECTOR DETERMINATION 

The objective~of the six-component force balance was to determine 
the thrust vector generated by the A J10-137 engine and to define the 
excursion of this vector with time. The calibration of the force balance 
was conducted, and the balance constanfs were applied to the measured 
forces in the manner presented in Section IV to obtain the actual forces 
produced by the engine. Once these forces were known, the principles 
of static equilibrium were Applied, and the six forces resolved into a 
thrust vector at the engine gimbal plane. This thrust vector is 

ii 
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presented in the form of the angle from vertical in the pitch and yaw 
planes* and the point of intersection of the thrust vector with the gim- 
bal plane, represented as distances ~:,7/) measured from the balance 
centerline. The thrust vector excursion for two different chambers 
(Table Vl) is presented in this report along with thrust vector measure- 
ments during gimbal operations from one test fir'ing. 

5.1 THRUST VECTOR MEASUREMENTS DURING NONGIMBALING OPERATION 

T h e  t w o  c h a m b e r s  i n v e s t i g a t e d  d i s p l a y e d  d i f f e r e n t  t h r u s t  v e c t o r  
e x c u r s i o n  p a t t e r n s .  S i n c e  t h e  b a s i c  e n g i n e  c o n f i g u r a t i o n  w a s  t h e  
s a m e ,  t h e  e x c u r s i o n  p a t t e r n s  a r e  a t t r i b u t e d  to  d i f f e r e n c e s  in c h a m b e r  
t h r o a t  e r o s i o n .  T h e  i n i t i a l  a n g u l a r  o f f s e t  f r o m  t h e  t h r u s t  c a g e  c e n t e r -  
l i n e  w a s  d e t e r m i n e d  to  be  1. 1 d e g  f r o m  v e r t i c a l  in  t h e  p i t c h  p l a n e  a n d  
0 . 2 2  d e g  in t h e  y a w  p l a n e  ( F i g .  7) f o r  c h a m b e r  1. T h i s  i n i t i a l  a n g l e  i s  
a f u n c t i o n  of  t h e  a l i g n m e n t  of  t h e  e n g i n e  in t h e  t h r u s t  c a g e  a n d  of  t h e  
d e f l e c t i o n  c h a r a c t e r i s t i c s  of t he  e n g i n e  m o u n t i n g  s y s t e m  u n d e r  f i r i n g  
l o a d s .  T h e  t h r u s t  v e c t o r  a n g u l a r  e x c u r s i o n  ( F i g .  7) f o r  c h a m b e r  1 i n -  
d i c a t e d  s i g n i f i c a n t  n o n s y m m e t r i c a l  c h a m b e r  t h r o a t  e r o s i o n  d u r i n g  t h i s  
c h a m b e r  l i f e  c y c l e .  T h e  t h r u s t  v e c t o r  a n g l e  e x c u r s i o n  in  t h e  p i t c h  
p l a n e  (0. 57 deg )  w a s  g r e a t e r  t h a n  t h e  e x c u r s i o n  in t h e  y a w  p l a n e  
(0. 22 d e g ) .  T h e  e x c u r s i o n s  d i d  f o l l o w  a d e f i n i t e  p a t t e r n  f o r  s i m i l a r  
f i r i n g s .  F o r  e a c h  2 0 - s e c  f i r i n g  t h e  a n g l e  d e c a y e d  f r o m  the  i n i t i a l  v a l u e .  
F o r  t h e  160-  a n d  6 0 - s e c  f i r i n g s ,  t h e  a n g u l a r  d e c a y  w a s  o b s e r v e d  f o r  a 
p e r i o d  of  50 s e c ,  a f t e r  w h i c h  t h e  a n g l e  i n c r e a s e d .  T h e  a n g l e  in  t h e  y a w  
p l a n e  e x h i b i t e d  a s i m i l a r  p a t t e r n ,  bu t  of  l o w e r  m a g n i t u d e .  A l t h o u g h  t h e  
a n g l e  d e c a y e d  f r o m  t h e  i n i t i a l  v a l u e ,  t he  i n i t i a l  v a l u e  f o r  e a c h  s u c c e s s i v e  
f i r i n g  w a s  l a r g e r  t h a n  t h e  p r e v i o u s  v a l u e .  T h e  i n c r e m e n t a l  a n g u l a r  c h a n g e  
b e t w e e n  t h e  e n d  of  one  f i r i n g  a n d  t h e  b e g i n n i n g  of  t h e  n e x t  i s  a t t r i b u t e d  to  
t h r o a t  a r e a  c h a n g e s  c a u s e d  by e x p a n s i o n  and  c o n t r a c t i o n  of  t h e  t h r o a t  due  
to  r e s i d u a l  h e a t  in t h e  a b l a t i v e  m a t e r i a l .  T h e  e x c u r s i o n  of  t h e  i n t e r s e c -  
t i o n  p o i n t  of  t h e  t h r u s t  v e c t o r  a n d  t h e  e n g i n e  g i m b a l  p l a n e  i s  p r e s e n t e d  in 
F i g .  8. T h e  e x c u r s i o n  of  t h e  i n t e r s e c t i o n  p o i n t  w a s  i n s i g n i f i c a n t  f o r  t h e  
s h o r t - d u r a t i o n  f i r i n g s  (up to  20 s e c ) .  F o r  t h e  1 6 0 - s e c  f i r i n g ,  t h e  e x -  
c u r s i o n  w a s  0. 18 in .  in t h e  y a w  p l a n e  ('~) a n d  0. 195 in.  in  t h e  p i t c h  p l a n e  
(~) a n d  o c c u r r e d  in a r a n d o m  p a t t e r n .  

C h a m b e r  1 w a s  t e s t e d  u n d e r  two  d i f f e r e n t  c o n d i t i o n s .  T h e  f i r s t  t w o  
t e s t  s e r i e s  (G a n d  H) w e r e  c o n d u c t e d  w i t h  s t i f f  l i n k s  u s e d  in p l a c e  of t h e  

The pitch and yaw planes used in this report are rotated 45 deg from 
the engine coordinate system. 
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gimbal actuators, whereas test series J and K were conducted using 
gimbal actuators. The angular difference measured after changing to 
gimbal actuators was 1.25 deg in the pitch plane and 0.53 deg in the 
yaw plane with a position change of 0.07 in. in the pitch plane and 
0. 14 in. in the yaw plane. The capability of realigning the force balance 
is :h0. 047 deg with respect to vertical and S0.07 in. with respect to the 
point of intersection of the gimbal plane and the force balance centerline. 
The difference between the thrust vector angle measured after the in- 
stallation change and the force balance angular alignment capability was 
I. 203 deg in the pitch plane and 0.48 deg in the yaw plane. The meas- 
ured thrust vector position (0.07 in. ) was within alignment capability of 
the force balance in the pitch plane ('~) and exceeded the alignment capa- 
bility by 0.07 in. in the yaw plane (~). These differences represent the 
minimum changes which can be attributed to differences in deflection 
characteristics of the stiff links and the gimbal actuators and of the 
capability of AGC to realign the engine centerline with the force balance 
centerline. 

The thrust vector excursion for chamber 2 is presented in Figs. 9 
and I0. The initial thrust vector was 0.36 deg in the pitch plane and 
-0. 62 deg in the yaw plarm. The excursion of the angle in the pitch and 
yaw planes displayed similar patterns with a total angular growth of 
0.44 deg in pitch and 0. 30 deg in yaw. The point of intersection is pre- 
sented in Fig. II as a function of cumulative time. The total excursion 
of the thrust vector position was 0. 15 in. in the pitch plane and 0.30 in. 
in the yaw plane. The tests conducted on chamber 2 were made using 
gimbal actuators. 

The angular excursion patterns for chamber 1 and chamber 2 dis- 
played similar patterns in the pitch plane. The angular patterns in the 
yaw plane were different, however. Although the total cumulative time 
on chamber 2 was greater (600 sec on chamber 2, 496 sec on chamber I) 
than on chamber I, the thrust vector angular excursion was less. The 
excursion of the thrust vector position for the two chambers showed little 
similarity. 

Thrust vector excursion is believed to be primarily and directly 
relatable to thermal and ablative effects on the combustion chamber. 
Figures 12a, b, and c show typical pre- and post-fire conditions of an 
A J10- 137 combustion chamber. 

13 
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5.2 THRUST VECTOR MEASUREMENT DURING GIMBALING OPERATION 

The  J - 3  s i x - c o m p o n e n t  f o r c e  b a l a n c e  was  d e s i g n e d  to d e t e r m i n e  
t h r u s t  v e c t o r  d u r i n g  n o n g i m b a l i n g  ( s t e a d y - s t a t e )  o p e r a t i o n  of the  Apol lo  
S]M eng ine .  In o r d e r  to e v a l u a t e  the f o r c e  b a l a n c e ,  h o w e v e r ,  the t h r u s t  
v e c t o r  was  d e t e r m i n e d  d u r i n g  g i m b a l i n g  o p e r a t i o n s  fo r  one eng ine  f i r i n g  
and the  r e s u l t s  a r e  p r e s e n t e d  in Fig .  13. The  g imba l  p r o g r a m  fo r  th i s  
p a r t i c u l a r  f i r i n g  was  a l o w - f r e q u e n c y  (0 .5  cps)  r a m p  and a s t ep  func t ion  
in the  y a w  p lane  only.  

Dur ing  the g i m b a l i n g  o p e r a t i o n  i n v e s t i g a t e d ,  the t h r u s t  v e c t o r  d e t e r -  
m i n e d  by the  f o r c e  b a l a n c e  fo l l owed  the g i m b a l  ang le  i n d i c a t i o n  r e c e i v e d  
f r o m  a p o s i t i o n  i n d i c a t o r  on the yaw g i m b a l  a c t u a t o r .  The  m a g n i t u d e  of 
the ang le  m e a s u r e d  by the f o r c e  b a l a n c e  c o m p a r e s  v e r y  c l o s e l y  with  the 
p o s i t i o n  i n d i c a t o r  with a m a x i m u m  d i f f e r e n c e  of 0 .24  deg  and g e n e r a l  
a g r e e m e n t  wi th in  0 .08  deg.  The  r e s p o n s e  of the f o r c e  b a l a n c e  m e a s u r e -  
m e n t s  was  at l e a s t  equal  to the  r e s p o n s e  of the p o s i t i o n  i n d i c a t o r .  

The  t h r u s t  v e c t o r  p o s i t i o n  d e t e r m i n e d  d u r i n g  g i m b a l i n g  is  the  t r u e  
v e c t o r  pos i t ion ,  w i th in  the a c c u r a c i e s  s t a t e d  in Sec t ion  III. The  f o r c e  
b a l a n c e  can  be u s e d  to d e t e r m i n e  a r e l a t i o n s h i p  b e t w e e n  the  c o m m a n d  
s i g n a l  and the  g i m b a l  a c t u a t o r  p o s i t i o n  i nd i ca t i on .  The  g i m b a l  r a t e  wh ich  
the f o r c e  b a l a n c e  can  fo l low is l i m i t e d  by the  low n a t u r a l  f r e q u e n c y  of the 
i n n e r  t h r u s t  cage  a s s e m b l y  ( f r o m  5 to 10 cps) .  T h e r e f o r e ,  a c o m p a r i s o n  
of t h e s e  p a r a m e t e r s  cou ld  be m a d e  on l o w - f r e q u e n c y  g i m b a l  o p e r a t i o n s  
only .  

The thrust vector determined by the force balance and shown in 
Fig. 13 was corrected for zero position at the beginning of the firing. 
The vector did not return to zero at the end of the firing, indicating thrust 

vector excursion resulting from thermal and ablative effects on the engine 

throat. 

SECTION Vl 
SUMMARY OF RESULTS 

A multicomponent force balance was developed to measure the thrust 
vector position and excursion during tests of the Apollo S/M engine which 
were conducted at AEDC. The results are summarized below: 

I. The thrust vector angle was determined for two ablative thrust 
chambers. The initial values, measured from vertical, were 
I. l deg in pitch and 0.22 deg in yaw for chamber 1 and 0.36 deg 
in pitch and -0.62 deg in yaw for chamber 2. 

14 



AE DC-T R-65-250 

2. The thrust vector angle excursion was determined for two 

chambers. The total angular excursion in the pitch plane was 
0. 57 deg and 0.44 deg for chambers 1 and 2, respectively. 

The angular excursion in the yaw plane was 0.22 deg and 
0.30 degfor chambers I and 2. 

3. The excursion of the thrust vector position was also determined. 
For chamber I the position excursion was 0. 195 in. in the pitch 

plane (~) and 0. 18 in. in the yaw plane {~). For chamber 2 the 
position excursion was 0. 15 in. in the pitch plane and 0. 30 in. in 

the yaw plane. 

4. Thrust vector measurements were made during gimbaling opera- 
tion of the Apollo engine. The thrust vector measurements 

agreed within 0.08 deg with the position indicator on the gimbal 
actuator. 

5. The precislon of thrust vector data was determined to be 

+0.033 deg from vertical on the angle and +0.0263 in. for loca- 

tion of the intersection of the thrust vector with the engine gimbal 

plane. The alignment accuracies of the force balance are 

±0. 047 deg from vertical and ±0. 07 in. for determination of the 
coordinate system centerline. 
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Fig. 1 Continued 
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A EDC-TR-65 -250  

TABLE V 
LOAD CELL DESIGNATION 

i Data Load Cell Designation 

1 FP1 data (forward pitch) 

2 FY1 data (forward yaw) 

3 Fa data (axial) 

4 FR data (roll) 

5 FP2 data (aft pitch) 

6 FY2 data (aft yaw) 

j Calibrate Load Cell Designation 

FPI cal (forward pitch) 

FYI cal (forward yaw) 

Fa cal (axial) 

FR cal (roll) 

FP2 cal (aft pitch) 

FY2 cal (aft yaw) 

Z Load Plane Designation 

pitch plane 

yaw plane 

axial direction 

roll direction 
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AEDC-T R-65-250 

TABLE VI 
ENGINE IDENTIFICATION 

C h a m b e r  No. C h a m b e r  S /N  E n g i n e  S / N  T e s t  S e r i e s  

1 47 11 G, H, J, K 

2 77 9A L 
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